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Abstract

As data mining gains acceptance in the analysis of massive data sets, it is becom-
ing clear that we need algorithms that can handle not only the massive size, but
also the high dimensionality of the data. Certain pattern recognition algorithms can
become computationally intractable when the number of features reaches hundreds
or even thousands, while others break down if there are large correlations among the
features. A common solution to these problems is to reduce the dimension, either
in conjunction with the pattern recognition algorithm or independent of it.

In this paper, we describe how dimension reduction techniques can help in the
classification of radio galaxies with a bent double morphology. We consider deci-
sion tree and generalized linear model classifiers, and explain the statistical and
exploratory data analysis methods we use to address the problem of high dimen-
sionality by selecting the features that are relevant to the problem. We show that a
careful extraction and selection of features is necessary for the successful application
of data mining techniques.
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1 Introduction

As commercial and scientific datasets approach the terabyte and even petabyte
range, it is no longer possible to manually find useful information in such data.
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To address this problem, semi-automated techniques from data mining are
increasingly being used as a viable means of analyzing these massive data sets.
Data mining is an iterative and interactive process, involving pre-processing
of the data, the search for patterns, and the interpretation and validation
of the results. In data pre-processing, relevant high-level features (also called
attributes or variables in different fields) are extracted from the low level
data, and in pattern recognition, a pattern in the data is recognized using
these features.

In many problems, the number of features extracted from the data may be
quite large, numbering in the hundreds or even thousands. This can make
the task of pattern recognition difficult and time consuming as many of the
features extracted may be irrelevant to the problem being addressed. Possible
high correlations among the features may render certain pattern recognition
methods invalid. In order to reduce the number of features to a more man-
ageable, well-selected set most relevant to the problem, dimension reduction
techniques are often used. These techniques can be applied either in con-
junction with the pattern recognition task, or independent of it. They may
or may not exploit information available from the problem domain and the
problem itself. We note that dimension reduction, dimensionality reduction,
feature selection, and variable selection, are all similar terms used by different
communities.

In this paper, we focus on dimension reduction techniques as they are applied
in the context of detecting radio-emitting galaxies with a bent double mor-
phology in the FIRST astronomical survey. Our objective is to show that a
careful extraction and selection of features is necessary for the success of any
data mining endeavor.

The paper is organized as follows. After a brief overview of data mining in
Section 2, we discuss the important role dimension reduction plays in the ac-
curate and efficient identification of patterns in the data. Then, in Section 3,
we briefly describe the problem we are solving using data mining techniques,
that is, the classification of bent double galaxies. Next, in Section 4, we dis-
cuss the techniques commonly used in dimension reduction, focusing on those
applicable in the context of our problem. This is followed in Section 5 by an
overview of the classification techniques used in the identification of bent dou-
ble galaxies. Our experimental results are presented in Section 6, followed by
our conclusions in Section 7.
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Fig. 1. Data mining: an interactive and iterative process.

2 Introduction to Data Mining

Data mining is a process concerned with uncovering patterns, associations,
anomalies and statistically significant structures in data [8,15,24]. It typically
refers to the case where the data is too large or too complex to allow either
a manual analysis or analysis by means of simple queries. As illustrated in
Figure 1, data mining consists of two main steps, data pre-processing and
pattern recognition. Pre-processing the data is often a time-consuming, yet
critical first step. To ensure the success of the data mining process, it is im-
portant that the features extracted from the data are relevant to the problem
and representative of the data.

Depending on the type of data being mined, the pre-processing step may con-
sist of several sub-tasks. These may include sampling to reduce the number
of instances, multi-resolution techniques to coarsen the resolution of the data,
data fusion to exploit data from different sources, de-noising of the data, ex-
traction of features from the data, and the normalization of the features. At
the end of this first step, we have a feature vector for each data instance.
Depending on the problem and the data, we may need to reduce the number
of features using feature selection or dimension reduction techniques such as
principal component analysis or its non-linear extensions. The data is now
ready for the identification of patterns through the use of algorithms such as
classification, clustering, and regression. These patterns are then displayed to
the user for validation. Data mining is an iterative and interactive process.
The output of any step, or feedback from the domain experts, could result in
an iterative refinement of any, or all, of the sub-tasks.

Data mining techniques are being applied for the analysis of data in a variety of
fields including remote sensing, bio-informatics, medical imaging, astronomy,
web mining, text mining, customer relationship management, and market-



basket analysis. While much of the focus tends to be on the pattern recognition
algorithms, it is the data pre-processing tasks that are more influential in
the success of the data mining endeavor [17,4]. Many of these tasks are also
domain- and problem-dependent, making a general discussion of them difficult.

In this paper, we focus on one of the tasks in data pre-processing, namely,
dimension reduction, or the reduction in the number of features that are used
to represent an object. There are several reasons why this is an important
task. First, the computation required in the pattern recognition task that
follows the extraction of features is dependent on the number of features that
represent an object. For example, the creation of a decision tree classifier
requires O(mn log(n)) operations, where n is the number of instances, m is the
number of features, and the tree is assumed to be of depth log(n). Therefore,
if the number of features is large, more computations are performed, and,
if these features are not discriminatory, they only increase the computations
performed. Second, experiments have shown that adding a random binary
feature to a standard dataset can cause the accuracy of a decision tree classifier
to degrade by 5% to 10%. This is because at some point in the creation of the
decision tree, the data available to select the decision variable is small enough
that the random feature is selected for the split on that node of the tree.
This results in random errors when the tree is used for classification. Similar
results are also observed with other classifiers [29]. Third, some classification
methods, such as the ones based on linear models, break down if there are
correlations among the features. Lastly, in many pattern recognition tasks,
the number of features represents the dimensions of a search space - the larger
the number of features, the greater the dimension of the search space, and the
harder the problem. The resulting curse of dimension, as well as its blessings
are discussed in greater detail in [7]. In light of these observations, dimension
reduction or feature selection techniques are often applied prior to the pattern
recognition step in data mining.

3 Searching for Bent Doubles in the FIRST Survey

In this paper, we describe how we are using dimension reduction techniques
in the process of mining the FIRST astronomical survey. The Faint Images
of the Radio Sky at Twenty-cm (FIRST) survey [1] is producing the radio
equivalent of the Palomar Observatory Sky Survey, and when complete, will
cover more than 10,000 square degrees of the sky to a flux density limit of
1.0 mJy (milli-Jansky). The data collected through 1999 has covered about
8,000 square degrees, producing more than 32,000 two-million pixel images.
At a threshold of 1.0 mJy, there are approximately 90 radio-emitting galaxies,
or radio sources, in a typical square degree.
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Fig. 2. Example radio sources from FIRST: (a)-(b) bent doubles, (c)-(d) non-bent
doubles, (e)-(f) complex sources.

Radio sources exhibit a wide range of morphological types (Figure 2) that
provide clues to the source class, emission mechanism, and properties of the
surrounding medium. Of particular interest are sources with a bent double
morphology as they indicate the presence of large clusters of galaxies. Cur-
rently, FIRST scientists identify a bent double through a visual inspection, a
process that is not only subjective, but also tedious, especially as the complete
survey will have nearly a million galaxies. Our goal is to replace this manual
classification by a more automated one, using techniques from data mining.

The data from the FIRST survey, both raw and post-processed, are readily
available at their web site (http://sundog.stsci.edu/). A user-friendly interface
enables easy access to radio sources at a given RA (Right Ascension, analogous
to longitude) and Dec (Declination, analogous to latitude) position in the sky.
There are two forms of data available for use — image maps and a catalog.
Figure 3 shows an image map containing examples of two bent doubles. These
large image maps, totaling about 250 gigabytes, are mostly composed of back-
ground noise, with a few pixels corresponding to the radio sources. The source
catalog is obtained by processing an image map by fitting two-dimensional
elliptic Gaussians to each radio source [28]. For example, the upper bent dou-
ble in Figure 3 is approximated by the three Gaussians shown in the table
in the lower part of the figure. Each entry in the catalog corresponds to the
information on a single Gaussian. This includes, among other things, the RA
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Fig. 3. An example FIRST image and catalog detail.

and Dec for the center of the Gaussian, the peak flux, the major and minor
axes, and the position angle of the major axis. The catalog is much smaller at
78 Megabytes, but contains information about parts of a radio source, rather
than the whole radio source.

In our analysis, we decided to first focus on the data from the catalog. It was
not only smaller, but, according to the astronomers, a good approximation to
all but the most complex of radio sources. Our first step was to group the cat-
alog entries into radio sources, based on their distances from each other. Next,
we separated the data depending on the number of catalog entries comprising
each radio source. We have a data set each for all the 1-entry, the 2-entry,
the 3-entry, and the 3-plus-entry sources. Then, we excluded the single-entry
sources on the assumption that they were unlikely to be bent doubles. We also
flagged all the 3-plus-entry sources as they were often complex and likely to
be of interest to astronomers. This left us with radio sources with 2 and 3 en-
tries. As the number of features extracted depended on the number of catalog
entries, and we wanted feature vectors of equal length, we worked with the
2- and 3-entry sources separately. However, this also meant that the original
training set was now divided into two smaller training sets. This “training”
set was composed of the few galaxies already identified as bent doubles and
non-bent doubles by the astronomers.

Next, we obtained the features, as indicated in Section 6.1. Since the number
of features was quite large relative to the size of the training set, in Section 6.2
we applied the dimension reduction techniques described in Section 4. Then,
in Section 6.3, we experimented with the classification algorithms described in
Section 5. The accuracy of the classifiers was evaluated using cross-validation



methods. If the accuracy was not sufficient, additional features were calcu-
lated based on the misclassified instances. The process was repeated until the
accuracy was acceptable to the astronomers. Finally, we applied the “best”
classifiers to the rest of the survey, and classified the unlabeled galaxies. Addi-
tional details on our approach, as well as the problems encountered in mining
the FIRST survey for bent double galaxies, are discussed in [9,14].

4 Techniques for Dimension Reduction

As we have described earlier, once the features have been extracted in the data
mining process, their number must be reduced to make the task of pattern
recognition tractable. There are several ways in which this can be done. Some
techniques exploit domain knowledge, others do not. Some techniques are
coupled with the task performed in pattern recognition, while others are not.

In many problems, domain knowledge and common sense can be a simple first
approach to reducing the number of features. For example, in the classification
of bent double galaxies, it is unlikely that the position of the galaxy in the
sky (i.e. RA and Dec) is a relevant feature. However, for other features such
as the relative spatial distances between the catalog entries or the maximum
intensity of a catalog entry, it may be difficult for the scientists to determine
if the feature is relevant to the problem at hand or not.

For such problems, several different approaches have been proposed. In the
machine learning community, a common approach to identifying the most rel-
evant features is through the use of wrappers [16]. Here the feature selection
is done using the classification algorithm as a black box to evaluate the selec-
tion. Starting with a training set for the classification problem, and an initial
set of features, various subsets of these features are selected. For each sub-
set, the algorithm is used to generate a model based on the training data.
The performance of a subset is measured by how well it classifies the test set.
The best feature subset found is then used in the actual design of the classi-
fication system. A different approach to feature selection is described in [2],
where the authors combine feature selection with pattern recognition. They
consider the binary classification problem of discriminating between two given
sets in an n-dimensional feature space by using as few of the given features as
possible. This problem is converted to a mathematical programming problem,
with a parametric objective function that achieves the task by generating a
separating plane in a feature space of as small a dimension as possible, while
minimizing the average distance of misclassified points to the plane.

For our work in the classification of bent double galaxies, we have used the
more traditional approaches to feature selection that are based on statistics.



These include include exploratory data analysis (EDA) and principal compo-
nent analysis (PCA). We describe these in further detail below.

4.1  Exploratory Data Analysis

Exploratory data analysis (EDA) [27,11] consists of a suite of simple tech-
niques that probe a dataset and can be used to understand the data and
the relationships among the features. The techniques include simple summary
statistics, pairwise plots, box-plots and parallel coordinate plots.

For high dimensional problems, it is often difficult to efficiently visualize the
data. As a result, standard multivariate plotting techniques, such as pairwise
plots and 3-D plots of three variables at a time, are of limited use in extracting
the complicated multivariate relationships among the features. Nevertheless,
we resorted to those techniques as means to explore different aspects of the
data. In addition, we also explored parallel coordinate plots, where, instead
of the perpendicular coordinate system, the coordinates are parallel [12]. This
allowed us to visualize a nearly unlimited number of features in a single plot,
instead of the maximum of three with the perpendicular coordinate system.
We do note that there are ways of including more than three variables in
the traditional methods, for example, by using arrows of different directions,
magnitudes and colors [10] for the different features, or the cartoon faces of
Chernoff to represent up to 15 variables [5]. Since we find it hard to interpret
such plots, we have not included them in our analysis.

4.2 Principal Component Analysis

The principal components (PCs) of a multivariate dataset are mutually or-
thogonal linear combinations of the variables in the original dataset, such
that the first PC has the largest variance, the second PC the second largest
variance, and so on [13]. Since the variance depends on the scale of the vari-
ables, the variables are generally standardized to have mean zero and variance
one before calculating the PCs. Otherwise, the variables with the largest ab-
solute variances will dominate. After standardization, all the variables are on
the same scale, so that the largest relative variances dominate. The PCs are
the eigenvectors of the data covariance matrix, with the first PC being the
eigenvector corresponding to the largest eigenvalue. For many datasets, the
first few PCs capture most of the variability, and thus provide a compact
representation of the important features in the data.



5 Classification Techniques

Classification is a pattern recognition technique in which an algorithm learns
a function that maps a data item into one of several pre-defined classes. These
algorithms typically have two phases. In the training phase, the algorithm is
“trained” by presenting it with a set of examples with known classification. In
the test phase, the model created in the training phase is tested to determine
how well it classifies known examples. If the results meet expected accuracy,
the model is put into operation to classify examples with unknown classifi-
cation. In this section, we briefly describe the two classifiers we are using for

the classification of bent doubles: decision trees and generalized linear models
(GLM).

5.1 Decision Tree Classifiers

A decision tree [3,22,23] is a structure that is either a leaf, indicating a class,
or a decision node that specifies some test to be carried out on a feature
(or a combination of features), with a branch and sub-tree for each possible
outcome of the test. The decision at each node of the tree is made to reveal the
structure in the data. Decision trees tend to be relatively simple to implement
and yield results that can be interpreted easily.

The feature to test at each node of the tree, as well as the value against which
to test it, can be determined using one of several measures [21]. Depending
on whether the measure evaluates the goodness or badness of a split, it can
be either maximized or minimized. In our work, we use the C5.0 decision
tree software (Rulequest Research, http://www.rulequest.com), which uses
the information gain as the criterion to determine the split. Let 7" be the
set of n examples at a node that belong to one of k classes, and 77, and Tg
be the two non-overlapping subsets that result from the split (that is, the
left and right subsets). Let L; and R; be the number of instances of class j
on the left and the right, respectively. Then, the information gain associated
with a feature is the expected reduction in entropy caused by partitioning
the examples according to the feature. Here the entropy characterizes the
(im)purity of an arbitrary collection of examples. For example, the entropy
prior to the split in our example would be:

k

Entropy(T) = ) —pilogo,p;  where  p; = (L; + R;)/n
i=1

where p; is the proportion of 7" belonging to class ¢ and (L; + R;) is the number
of examples in class ¢ in 7. The information gain of a split S = {77, T}



relative to 7" is then given by

T, T,
Gain(7T, S) = Entropy(7T') — % * Entropy (1) — % * Entropy (Tg)
where 77 and Ty are the subsets of 7" that correspond to the left and right
branches, respectively.

5.2  Generalized Linear Model Classifiers

Linear models [25] explain response variables in terms of linear combina-
tions of explanatory variables. Following standard notation in the statisti-
cal literature, given n observations (examples) of the p explanatory variables
x; = {1,z;1, -+ ,%ip—1} and the associated response values y;, the linear
model (LM) has the form

Bo
n Lz xp oo Tip 3 €1
1
Y2 1 mo1 woo -+ Top_1 €
= S o | T .| (3)
1 : : : . :
Yn 1 Tpi1 Tp2 """ Tpp-1 €n
ﬁpfl
T . . .
where 8% = {Bo, 51, -, Bp—1} is the unknown regression coeflicient vector,
and the errors €' = {eg, €, - ,€,} are assumed to be independent of the

explanatory variables. In matrix notation, we can write (3) as
y=XB+e E(e)=0, Cov(e)=%, (4)

where we also indicated that the errors are assumed to have mean zero and
positive definite covariance matrix 3.

The parameter estimates ,[;’ for the LM in (4) are generally obtained either by
minimizing the residual sum of squares, or by maximizing the joint likelihood
of the observations under a multivariate normal error distribution. Both of
these methods result in

B =arg mﬂin{(y - XB8)T (y — XB)}. (5)

Differentiating with respect to B leads to the well-known normal equations

X'2'XB =X'sy, (6)
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and, assuming the inverse exists, to the generalized least-squares (GLS) esti-
mates

B=XZTIX)"'X'sy. (7)
If ¥ = 1,, the GLS estimates are called ordinary least squares estimates
(OLS); if ¥ is diagonal, they are called weighted least squares (WLS) esti-
mates.

In our context, the response is a binary variable indicating bent/non-bent,
and the galaxy features are the explanatory variables. However, under the
LM, there are no restrictions on the fitted values y = XB and on predicted
values 7, = xk[;’ corresponding to previously unseen values x;. In order to
model binary responses, we need to guarantee that ¥ and g are binary.

The generalized linear model (GLM) [20,6] extends the LM by allowing the
response variable to be restricted to a certain range, and to have variances that
depend on the mean. The GLM models a function of the expected value of
¥; in terms of linear combinations of the explanatory variables. Let u; denote
the expected value of y;, that is, u; = E(y;). Then, a GLM can be written as

g(wi) =xiB=m and Var(y;) = oV (), (8)

where the monotone increasing link function g describes how the mean depends
on the linear predictors, the variance function V' specifies how the variance
depends on the mean, and ¢ is a constant dispersion parameter.

Binary responses, taking discrete values in {0, 1} according to the probability
distribution d(y;; i) = pd (1 — p;)' 7%, fit naturally in the GLM framework.
The logit link

7

g(m) = log <1 H ) =, 9)

or its equivalent inverse link

Fm) =1 = i (10)
together with the variance function
V(i) = pa(1 — ) (11)

capture the characteristics of binary responses. By Eq. (10), p; is in the interval
[0,1], and the variance is accurately described by Eq. (11). We will use this
GLM, also known as the logistic regression model, to classify the radio galaxies.

The parameters of a GLM are usually estimated by maximizing the likelihood
function corresponding to the assumed model. Unlike in the LM case displayed
in Eq. (6), however, the normal equations for the GLM are nonlinear in the
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parameters 3, and therefore the optimization problem has no closed-form so-
lution. In practice, the parameters can be estimated by iteratively re-weighted
least squares (IRLS), a variant of the Newton algorithm. For the unfamiliar
reader, we include the estimation steps in Appendix A.

If B denotes the IRLS coefficient estimate for the logistic regression model,
the mean value estimate corresponding to observation ¢ is given by

 eofxf)

i = ——————=—. (12)
1+ exp{x;B}
The fitted values g; of the original binary variables can be obtained by
Yi = I{ﬂizp}’ (13)

where I7,y is the {0, 1} indicator function corresponding to {a = False, a = True},
and the fraction p is generally taken to be p = 0.5. Predictions corresponding
to future values of the explanatory variables x; are formed in a similar fashion.

6 Experimental Results

In this section we present the results of the application of various dimension
reduction techniques, in conjunction with the classifiers, for the problem of
classification of bent double galaxies in the FIRST survey. Recall that our goal
is to find a procedure that will best classify the galaxies into bent doubles and
non-bent doubles. We focus on the three-entry galaxies, using a training set
of 195 examples with 167 bent doubles and 28 non-bent doubles.

In Section 6.1, we indicate the 103 features we extracted from the FIRST
catalog. To avoid any unwanted effect due to the different measurement units,
we standardized the feature columns to have mean zero and standard deviation
one. Next, we reduced the dimension of the feature set, as 103 features were
too many compared to the size of the training set. Finally, we applied the
classification algorithms described in Section 5. While the decision trees in
Section 5.1 are not severely affected by the number and the relevance of the
features, the linear models in Section 5.2 are very sensitive to the quality of
the input feature set. They assume that the features are linearly independent,
and that the number of features is far less than the number of examples.

An important issue in evaluating the performance of classification algorithms
is their accuracy. According to the astronomers, for the bent double problem,
a method with about 90% accuracy was adequate, since it was not possible to
do better with manual identification. So, the misclassification error, including
bents classified as non-bents and non-bents classified as bents, of a good model

12



should be below 10%. We evaluated the performance of the methods using ten-
fold cross-validation with the training set. We divided the data randomly into
ten parts, selected a model based on nine parts at-a-time, then evaluated it
on the remaining one part.

We also make the following observations about our data. Our training set was
relatively small as the galaxies had to be manually labeled by the astronomers.
It was also not very accurate as the scientists were often subjective and incon-
sistent in their labeling. In addition, as we are currently using features from
only the catalog, we expect good performance only if the “bentness” of a radio
source is adequately represented by these features.

6.1 Features for Bent Doubles

We identified relevant features for the classification of galaxies through exten-
sive conversations with the FIRST astronomers. We found that they placed
greater focus on spatial features such as distances and angles. Frequently, they
would characterize a bent double as a radio-emitting “core” with one or more
additional components at various angles, which were usually wakes left by the
core as it moved relative to the Earth. Based on this information, we took
some of features directly from the FIRST catalog and derived others from the
basic ones in the catalog. We focused on features that were scale, rotation
and translation invariant, as the bent double pattern was scale, rotation, and
translation invariant. We were also interested in features that are robust, that
is, not sensitive to small changes in the data. In addition, we included various
book-keeping “features”, such as radio source ID, to help us easily map the
galaxies in our code to the galaxies in the survey. Appendix A lists all the 103
features we calculated from the FIRST catalog.

6.2 Results of Feature Selection

Having identified and extracted the 103 features that could possibly discrim-
inate between a bent double and a non-bent double, our next task was to
reduce this large number to something more manageable and minimize any
dependencies and redundancies among the features. Section 6.2.1 reports the
results of the EDA methods described in Section 4.1, and Section 6.2.2 reports
the results of the PCA methods explained in Section 4.2.
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6.2.1 Feature Selection Results with Exploratory Data Analysis

We first used EDA to see if we could identify simple relationships among
the features that would help us to reduce their number for the bent double
problem. Figure 4 displays an example parallel coordinate plot. The values of
the nine features selected are plotted on coordinates that are parallel to each
other, with the bent doubles in the left panel and non-bent doubles in the
right panel.

We notice several relationships among the features. We first note that there
are a few possible outliers in the non-bent dataset, corresponding to the four
larger-than-usual values in the peakFlux, CFlux and CSNR features. In
addition, the almost parallel lines connecting ARA and BRA indicate that
those variables are very highly correlated, which is to be expected as the RA
coordinates of the entries A and B in a galaxy are close to each other. It is also
clear that the bent doubles in the training set are situated in three different
sections of the sky (note the three disjoint sections connecting ARA and
BRA in the left panel), while the non-bents are concentrated in the first two
sections. This relationship may make the sky coordinates appear significant in
classifying bent doubles, though domain knowledge would indicate otherwise.
We also observe that the totArea feature is fairly independent of the RA
position in the sky (note that the lines from the disjoint sections in BRA
map to the same single region of totArea, except for a few outliers). Also,
there is a high negative correlation (=-.99) between coreAngl and ariAngl.

In addition to parallel plots, we also used other EDA tools such as the cor-
relation matrix of the features and simple box-plots to identify the features
that could discriminate among the bent doubles and the non-bent doubles.
We used the following guidelines to reduce the number of features:

e if a feature was dependent on the scale or sensitive to small changes in the
data, we ignored it.

e we considered simple box-plots to determine if the feature could be used to
distinguish between the bent doubles and the non-bent doubles. Based on
Figure 5, for example, we ignored both ABRelPFlux and ABAnglDiff.

e if several features were highly correlated, we kept only one of them. In such
cases, we tried to keep the most astronomically relevant feature. However,
we note that this selection process was not strictly objective, as we could
have chosen different features on several occasions.

The most important features based on the methods of this section are:

(1) sumIntFlux (5) totalBendGeom
(2) totEllipt (6) ariAngl

(3) angleAB (7) ABAnglSide
(4) angleAC (8) ACAnglSide
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(9) sumRelDist (14) AB(AC,BC)RelDist
(10) axialSym (15) A(B,C)Diffusion
(11) ariSym (16) A(B,C)Ellipt

512; anotherSym (17) A(B,C)RMS

13) pointSrc

6.2.2 Feature Selection Results with PCA

Next, we calculated the PCs of the FIRST features, and found that the first
20 components explained about 90% of the variance. Table 1 presents the
individual standard deviations and cumulative percentages corresponding to
the first three and to the twenty-th principal component. Figure 6 presents the
galaxies in the training set as a function of the first two principal components;
the second panel is a zoomed-in version of the first. The bents are labeled by
“b” and non-bents by “n” in the two graphs. The first two PCs do not clearly

PCy PCy PC3 | ... | PCy
Standard deviation 4.5238 | 3.3435 | 2.7163 | ... | 0.8727
Proportion of variance | 0.2285 | 0.1248 | 0.0824 | ... | 0.0104
Cumulative proportion | 0.2285 | 0.3534 | 0.4358 | ... | 0.9095

Table 1
Importance of the first few principal components.
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separate the two classes. A few non-bents, along with a single bent, have PC}
values above around fifteen, and are some distance away from the rest of the
galaxies. Instead of being clustered together, however, these well-separated
galaxies fill different regions of the PC,-PC) space, and seem to be outliers.
The other galaxies are mixed together in the plots, regardless of their class
labels. On closer examination, the outlier galaxies have the largest values of
the peakFlux variable, and correspond to the galaxies with the unusually
high values of peakFlux visible in Figure 4.

Following [19], we used the PCs to eliminate unimportant variables. Consid-
ering the eigenvector corresponding to the smallest eigenvalue of the covari-
ance matrix, we discarded the variable with the largest coefficient (in absolute
value) in that vector. Then, we considered the eigenvector corresponding to
the second smallest eigenvalue, and discarded the variable with the largest (in
absolute value) coefficient, among the variables not discarded earlier. Contin-
uing this process, we found the 20 most important variables to be:

(1) angleAB (11) BCRelEllipt
(2) angleAC (12) BCRelSNR
ES; ACRelDist E13§ AlIntFlux

4) BEllipt 14) AEllipt

(5) ABCombDist (15) ASidelobe
(6) ABRelPFlux (16) BTotArea
(7) ABAnglGeom (17) BIntFlux
(8) ACRelPFlux (18) BRMS

(9) ACAnglGeom (19) CIntFlux
(10) BCRelIFlux (20) CMaj

Comparing these features to the features suggested by EDA methods in Sec-
tion 6.2.1, we note that the features angle AB, angle AC, ACRelDist, AEIl-
lipt, BEIllipt, and BRMS are common to both methods.

6.3 Results with Classification Techniques

We next present the results for the classification of bent doubles, using the
decision tree and GLM classifiers. We experimented with both the original set
of features as well as the reduced sets found through EDA and PCA. In all
cases, we performed 10-fold cross-validation 10 times. The errors we report
include both misclassification errors: bents classified as non-bents, and non-
bents classified as bents. The astronomers tolerate higher rates of the latter
errors, but would like to minimize the mistakes of the former type.
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6.3.1 Results Based on Decision Tree Classifiers

In our first set of experiments with decision trees, we used all but the book-
keeping features. Results for a typical such tree is given below.

Decision tree created with all (but the book-keeping) features:

angleAC <= 4.656:
:...BEllipt <= 2.083: 1 (11.0)
BE1llipt > 2.083: 5 (4.0)
angleAC > 4.656:
:...CPointSrc = 1:
:...axialSym <= 3.038: 1 (5.0)
axialSym > 3.038: 5 (3.0)
CPointSrc = 0:
:...BCRelFlux <= 3.512: 5 (145.0/4.0)
BCRelFlux > 3.512:
:...ACComDist <= 28: 5 (4.0/1.0)
ACComDist > 28: 1 (4.0)

The output lists the feature selected at each node and the value it is compared
against. The number after the colon indicates that the node is a leaf node, and
the number is the class assigned to the leaf (5 denotes a bent double, while
1 denotes a non-bent double). At each leaf node, the numbers (a/b) indicate
the (total number of samples/samples of the class not assigned to leaf node).

From 176 (=90% of the labeled data) cases in the training data, this particular
tree correctly classified all bents, and all but 5 non-bents, with an overall error
of 5/176=2.8%. This resubstitution error is overly optimistic, as it reflects the
error on the same data that was used to build the tree (note that C5.0 uses
pruning in constructing the trees). More relevant is the error on the 19 (=10%
of the labeled data) test cases not included in constructing the tree. That
cross-validation error is 1/19=5.3%, as the tree classified all bents from the
test data correctly, and it misclassified 1 non-bent as a bent.

Results for ten different 10-fold cross-validation experiments are given under
the “Tree 1: All features” columns in Table 2. The “Errors” column includes
the two types of misclassification errors in the 10 ten-fold cross-validation
experiments, and the “# Leaves” refers to the number of leaf nodes in the
tree, as a measure of complexity of the trees. The Mean and the SE rows
report the mean and the standard error, respectively, of the quantities in the
corresponding columns.

The decision trees based on all features tend to pick combinations of angles
and relative distances as the most important features. Other features include
measures of ellipticity and symmetry — features that are all scale, rotation,
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Tree 1: Tree 2: Tree 3:
All features EDA, PCA features | GLM M3 features

# Leaves | Errors || # Leaves | Errors # Leaves | Errors

Mean 7.8 11.1% 7.1 9.5% 6.7 8.3%
SE 0.1 0.4% 0.1 0.4% 0.1 0.4%
Table 2

Results of ten 10-fold cross-validation experiments using decision trees.

and translation invariant. The angles are usually either the core angle, or pair-
wise angles calculated geometrically — angles that are robust to small changes
in the data. The very reason we included the geometrical angles, AnglGeom,
is exactly to avoid the sensitivity of the differenced angles, AnglDiff, both
explained in Section B.2. The trees generally ignore features related to the
fluxes and the areas. Overall, the trees make sense, and they pick the features
that we expected in the first place to be closely related to the problem.

To see the effect of reducing the number of features, we next created the tree
using subsets of the features. First, we included the features selected by the
EDA and PCA methods. The results are presented in the column “Tree 2:
EDA, PCA features” in Table 2. A typical tree is given below. From 176 cases
in the training data, this tree classified all bents correctly and incorrectly clas-
sified 3 non-bents as bents, with an overall error of 1.7% on the training data.
From the 19 test cases, it classified all non-bents correctly, while misclassifying
1 bent as a non-bent, giving an overall error of 5.3% on the test set.

Decision tree created with the features suggested by EDA and PCA:

angleAC <= 4.656:

:...BEllipt <= 2.083: 1 (9.0)
BEllipt > 2.083: 5 (4.0)

angleAC > 4.656:

:...ACRelDist <= 6.427: 5 (143.0/3.0)
ACRelDist > 6.427:
:...BEllipt > 3.408: 5 (5.0)

BEllipt <= 3.408:

:...ABAnglGeom <= 120: 1 (10.0)
ABAnglGeom > 120:
:...BTotArea <= 22.84: 5 (3.0)

BTotArea > 22.84: 1 (2.0)

Corresponding results, using only the features in the GLM model M3 in Sec-
tion 6.3.2, are reported below, and in the “Tree 3: GLM M3 features” column
in Table 2. From 176 cases in the training data, the tree below correctly clas-
sified all bents and incorrectly classified 5 non-bents as bents, with an overall
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error of 2.8% on the test data. It correctly classified all the 19 test cases,
resulting in a zero error on the test data.

Decision tree created with the features in the GLM model M3:

angleAC <= 3.999:
:...BEllipt <= 2.083: 1 (10.0)
BEllipt > 2.083: 5 (3.0)
angleAC > 3.999:
:...ACRelDist <= 6.401: 5 (141.0/3.0)
ACRelDist > 6.401:
:...BEllipt > 2.455: 5 (7.0/1.0)
BEllipt <= 2.455:
:...CRMS <= 0.136: 5 (3.0/1.0)
CRMS > 0.136: 1 (12.0)

Comparing the results in Table 2, we find that including fewer variables in the
model results in smaller and more accurate trees.

6.3.2 Results Based on Generalized Linear Models

For the FIRST dataset, we used the logistic GLM described in Section 5.2
to model the bent/non-bent categorical response variable as a function of the
features. In our context, we were not as much interested in the goodness of fit of
a model per se, as we were in finding a model with good predictive properties.
In each fold of the cross-validation, we started by first fitting a fixed model,
then used stepwise variable selection to find the best submodel. We used the
step() function of the S-PLUS 6 software [26] that combines both backward
and forward searches. This method starts with a user-specified model, then fits
a series of other models by sequentially dropping (backward step) and adding
(forward step) one variable at a time from a given list of variables. If the fitting
improved from the previous model, the search is continued, otherwise the
procedure stops. The goodness of a model is measured by an approximation
to Akaike’s Information Criterion (AIC), which, in principle, combines the
negative of the log-likelihood with a penalty term for large models. A good
model should minimize the AIC.

Before fitting a GLM to the FIRST features, we first used the pair-wise cor-
relation matrix of the variables to combine the features suggested by EDA in
Section 6.2.1 with the features suggested by PCA in Section 6.2.2 into a set of
nearly uncorrelated features. We then formulated a GLM with the resulting
features as the explanatory variables. This resulted in the model M1 described
in Appendix C.

Next, we created model M2 from M1 by performing stepwise model selection.
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GLM M2 | GLM M3 | GLM M4
Errors Errors Errors
Mean 0.947% 7.84% 4.00%
SE 0.22% 0.91% 1.14%

Table 3

Results of ten 10-fold cross-validation experiments using generalized linear models.
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Fig. 7. Fitted values based on models M2, M3 and M4. In the S-PLUS parameter-
ization, the class of bents is coded with zero, and the class of non-bents with one.
The labels “b” and “n” indicate bents and non-bents, respectively.

As shown in Appendix C, M2 discards ADiffusion and ASidelobe.

The first column of Table 3 presents the misclassification errors of 10 ten-fold
cross-validation experiments using M2. The resulting errors are much lower
than the errors obtained using decision trees in Table 2, Section 6.3.1.

The first panel of Figure 7 presents the fitted values fi; in the interval [0, 1],
obtained via Eq. (12) from the estimated coefficients from M2. Note that in the
S-PLUS parameterization, the class of bents is coded with zero, and the class
of non-bents with one. Since we built the model M2 on the labeled training set,
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we know the actual bent (b) or non-bent (n) class label corresponding to each
galaxy. By comparing the true labels to the model-based fitted (predicted)
values, we can study the accuracy of the model. Ideally, all bents should have
fitted values close to zero, and all non-bents should have fitted values close
to one. Using a cut-off value of 0.5, classifying the fitted values above 0.5 as
non-bents, and the ones below it as bents, this model misclassified two bents
and one non-bent.

In order to find alternative linear models, we also tried stepwise model selection
starting from the five variables selected by both the EDA and the PCA feature
selection methods in Sections 6.2.1 and 6.2.2, respectively. The best model we
found with this procedure is M3 given in Appendix C. The corresponding
fitted values are shown in the second panel of Figure 7.

Although most fitted values based on M3 corresponding to bents are close to
zero, there are quite a few of them around 0.2, some around 0.6, and one close
to 0.8. Most fitted values for the non-bents are clustered from 0.6 to 1.0, but
some are below 0.6, and one is actually very close to 0. Based on Figure 7, we
could hypothesize that galaxies with fitted values in the [0,0.2] interval are
very likely to be bent doubles, those in the [0.8,1.0] range are very likely to be
non-bent doubles, while the ones falling in between these two intervals can be
either. If we wanted to use the fitted values to assign a unique bent/non-bent
label to all galaxies, we could use a cutoff value, and round all fitted values
below/above the cutoff to 0/1. Recall that we want to catch all the bents
without missing any, but do not mind if we include occasional non-bents.
From the second panel of Figure 7, the cutoff choice of 0.8 seems reasonable
for M3. If we had used a cutoff of 0.5, this model would have misclassified
five bents and seven non-bents. The second column of Table 3 summarizes the
results of 10 ten-fold cross-validation experiments using M3.

Stepwise model selection considering adding or dropping single terms in M3
does not lead to any improvement. However, including up to second-order
interaction terms [25,20,26] in the stepwise search leads to superior models,
such as M4 given in Appendix C.

The fitted values based on M4 are shown in the third panel of Figure 7. Note
the improved accuracy over the results of M2 and M3 in the first and second
panels. Using a cutoff of 0.5, M4 classifies correctly all the galaxies. To in-
vestigate its predictive accuracy, the third column in Table 3 summarizes the
results of 10 ten-fold cross-validation experiments starting from M3, and con-
sidering up to second-order interaction terms in the stepwise model selection.

Based on the results in Table 3, the model M2 leads to the lowest misclassifica-

tion errors, followed by M4, then by M3. Compared with the results in Table 2
based on decision trees, on the average, generalized linear models tend to have
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Tree 1 | Tree 2 | Tree 3 | GLM M2 | GLM M3 | GLM M4 | All 6

Non-bent | 5412 4628 5660 5118 11080 4340 637

Bent 9647 | 10431 | 9399 9941 3979 10719 2577
Table 4

Classification results for the 2000 catalog by the six different methods.

smaller errors. However, the tree and the linear model constructed using the
same M3 features have comparable performance: compare the errors and their
standard errors in the third column in Table 2 with the corresponding values
in the second column in Table 3.

We also fitted GLMs using the 20 most important PCs (Section 6.2.2) as the
explanatory variables. The average misclassification error of ten repetitions of
such 10-fold cross-validation experiments was 11.63, with a standard error of
1.41, much higher than the errors reported in this section.

6.3.3 Classifying the Unlabeled Data

This section reports the classification results on the unlabeled 2000 catalog
data. There are 15,059 three-entry radio sources in the catalog. Table 4 com-
pares the number of galaxies classified by the six different classifiers: trees 1
through 3 are the decision trees in Table 2, and GLM M2, M3, and M4 are the
generalized linear models in Table 3. The last column, labeled “All 67, refers
to the cases where all six classifiers agreed. We have greater confidence in this
last column, as six different classifiers, from two different categories, gave the
same results. Figure 8 shows a few bent and non-bent galaxies similarly identi-
fied by all classifiers. In those cases, the class labels commonly assigned by the
six methods are correct: the galaxies in the top row are indeed bents, while the
ones in the bottom row are non-bents. To properly estimate the percentage
of false positives and missed bents in the catalog, we would need to visually
explore moderate-sized random samples from both the set classified as bents,
and the one classified as non-bents.

7 Summary

In this paper, we described the role dimension reduction techniques can play
in data mining using an application from astronomy, namely, the detection of
radio galaxies with a bent double morphology. Our experiences indicate that
the identification and extraction of relevant features plays a very important
role in the accuracy of the pattern recognition algorithms. Equally important
is the availability of a good training set, which can be non-trivial in scientific
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(d) (e) (f)

Fig. 8. Example classification results for the unlabeled FIRST catalog data: (a)-(c)
classified as bent doubles, (d)-(f) classified as non-bent doubles.

surveys.

Though much remains to be done, our initial results are very promising. We
identified over 2500 potential “bent double” radio galaxies, a significant re-
duction from the more than 15000 galaxies in the survey. While we realize
that there are inherent errors and uncertainties involved in every classification
method, our work narrows the field considerably for the astronomers as they
can now focus their observations on these galaxies to confirm their “bentness”.
In particular, we were pleased to notice that our semi-automated techniques
identified a bent double missed in the manual search, thus illustrating the full
potential of data mining. Our future plans include enhancing the training set
through the examples validated by the astronomers, improving the feature
set for the three-entry radio sources, and conducting a similar process for the
two-entry radio sources.
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Appendix A: The Iteratively Re-weighted Least Squares Algo-
rithm

In this section, we describe the IRLS algorithm to estimate the parameters of
a GLM [20,6]. The notation and assumptions are as introduced in Section 5.2.

The parameters of a GLM can be estimated by maximizing the likelihood
function corresponding to the assumed model. Let d(y;; 3) denote the prob-
ability density function of the observation y; given the parameter vector 3.
The log-likelihood is then defined as

[(B;y:) = log d(ys; B)- (14)

For n independent observations, the joint log-likelihood is
n

1(B;y) =D _UB;ys)- (15)

=1

The parameter estimates B maximize the joint log-likelihood, and are obtained
by solving the normal equations:

ol(B;y)
oB

It can be shown [6] that for a GLM

ol(B;y) (Y — )iy ((M) .
=2 Y) s = . forj=0,--,p—1. 17
0B; e ,:Zl Var(y;) om; J P (17)

=0. (16)

The normal equations for the GLM are nonlinear in the parameters 3, and
therefore the optimization problem has no closed-form solution. In practice,
the parameters can estimated by iteratively re-weighted least squares (IRLS),
a variant of the Newton algorithm.

The multidimensional version of the Newton method gives the mth approxi-
mation in terms of the (m — 1)st approximation as

-1

A(m)  a(m-1) 0%l _
— I U(m 1)
B B [aﬂjaﬁk]ﬂ_ﬁ(m_l) : (18)

where U(™-1) is the vector of first derivatives U; evaluated at B = ﬂ(m Y . The

method of scoring simplifies the Newton procedure by replacing the matrix of
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second derivatives in Eq. (18) with its expected value,

0%l 0%l
bmﬂﬁq%my (19)
which by
T, :E(U-U):E[ﬁﬁ] :—E[ ol ] (20)
7 Ik d5; 0Bk 85;08

is the negative of the Fisher information matrix Z = E(UU’) of the U;s. The
approximation in Eq. (18) therefore becomes

A

B(m) _ ,B(m_l) + [I(m_l)]_lU(m_l), (21)
where Z™Y ig the information matrix evaluated at B(m_l). Pre-multiplying
both sides by Z™ ™V, we obtain

(m-1)

1™ — gm-1 g3 + Ulm=1), (22)

Evaluating the expression of the information matrix for a GLM, we have

2
"\ ZiZik (O
T = J ( ) , 23
ik 1:21 Var(y;) \ On; (23)
leading to
T =X'WX, (24)
where the diagonal n x n weight matrix W has elements
1 O ?
i = . 25
it )

By the results of Eq. (17) and (23), the elements of the right hand side of (22)
are given by

- R az (m—1 - i~ Mg )Lag az
SE i) - ) @

k=0 i—1 on; i—1

Writing

Zl‘mﬁ(m Y — i) (gni) = g(m) + (Y — 1) (8%(5)) , (27)

and substituting the results of Eq. (23) through (27) into Eq. (22), leads to
the normal equations

XWx3"™ = X'Waz, (28)

where z = {z1,..., 2, }".
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Comparing Eq. (28) to Eq. (6), note that the terms in Eq. (28) correspond
to taking the diagonal covariance matrix W~! as X, and the transformed
variable z as the response y in Eq. (6). In general, both z and W depend on
,3 , and the solution is found by iteration. The steps for the logistic regression
are as follows:

(1) Set initial values
e 11;(9; to avoid zero denominators in fitting the {0,1} variables, p;(? is
generally chosen to be either 0.5 for all values, or to have two different
values for the two levels of the response (say 1;(*) = 0.1 if y; = 0 and
,u(o)—OQifyizl)

()
A0 = g(u") = log< (0))

e WO = diag(wﬁ), . ,w(o)), with w§?) = u§°)(1 - Ngo))

nn
(2) Form coefficient estimate as B(l) = (X'WOX) ' X'WO 70
(3) Fori=1,...,n, update the estimates as

. uz 0= exp{xgé I+ exp{xiB)]
(1)
log( D) + (i — i) 51)(11—u§”)

o) = i1 40

(4) Iterate steps (2) and (3) until the difference between successive estimates

A(m—1

B

and B(m) is negligible within the desired accuracy.

Appendix B: Features for Radio-Emitting Galaxies

B.1 Features for a Single Catalog Entry

The following list enumerates potential features pertaining to a single catalog
entry. To differentiate among features corresponding to different entries in
radio sources with more than one catalog entry, we prefix the feature names in
such cases. For example, in a two-entry source, APeakFlux and BPeakFlux
denote the peak fluxes corresponding to entries A and B, respectively.

(1) PeakFlux: the peak flux value (mlJy)

(2) TotArea = M: the total area of the entry, as measured by the
fitted elliptical Gaussian, where Maj and Min are the lengths of the
major and of the minor axes, respectively

(3) IntFlux: the integrated flux value (mJy)

(4) RA: the right ascension RA (decimal hours)

(5) Dec: the declination Dec (decimal hours)
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(6) Ellipt = % > 1: a measure of the the entry’s ellipticity, with one being
a circular entry

(7) RMS: the local noise estimate (mJy) at the position of the entry in the
sky

(8) Sidelobe: {0/1} flag, 1 if the entry might be a sidelobe of a nearby bright
source, (0 otherwise

9) Mayj: the size (arc seconds) of the major axis

0) Min: the size (arc seconds) of the minor axis
(11) Diffusion = ItFlux. 5 measure of diffusion
(12)

TotArea®
SNR = PeakFlux0.25. the peak flux density signal to noise ratio (the 0.25

reflects a biafsu\(/:[grrection documented in the FIRST survey); it can also

be thought of as a “standardized” peak flux quantity

(13) PointSrc: {0/1} flag, 1 if the entry is a point source (its Maj less than
2 arc seconds), and 0 otherwise

(14) Flux: set to PeakFlux for point sources, and to IntFlux for elliptical
sources

(15) PosAngle: the angle (degrees) of the major axis, measured counterclock-

wise from North — in Figure 9(a), the arrows indicate the angle corre-

sponding to entry B: about 45° in the left image, and about (180 — 45)°

in the right one (0° for entry A in both cases)

(
(1
1
1

B.2 Features for Two Catalog Entries

Potential features for a 2-entry radio source, or for a 3-entry source with
the entries considered two-at-a-time are listed below. Features (1) through
(8) characterize a 2-entry radio source, and features (9) through (20) pertain
to any two entries taken together. This distinction will become clearer in
the 3-entry radio source case, Section B.3, where the meaning of features
(1)-(8) below will change to include all three components, and, in addition,
the radio source features will include all three combinations of the pairwise
features (9)-(20). In a 3-entry source, to distinguish among the three sets of
features (9) through (20), corresponding to the pairs AB, AC and BC, we prefix
the feature names with the corresponding pair name. For example, the three
ComDist features would be ABComDist, ACComDist and BCComDist.
Figure 9(a) shows two possible elliptical Gaussian fits for a 2-entry source. The
entries are ordered based on the maximum integrated flux, that is, entry A
has higher integrated flux than entry B.

(1) totArea: the sum of the two total areas

(2) peakFlux: the max of the two peak fluxes

(3) sumIntFlux: the sum of the two integrated fluxes
(4) avgDiffusion: the mean of the two diffusions

(5)

5) totEllipt: the sum of the two ellipticities
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(a) (b)

Fig. 9. (a) Two examples of 2-entry fitted radio sources. (b) An example of a 3-entry
fitted radio source.

(6) maxFlux: the max of the two fluxes
(7) sideLobe: {0/1} flag, 1 if at least one of the entries might be a sidelobe
of a nearby bright source, 0 otherwise
(8) pointSrc: {0/1} flag, 1 if at least one of the entries is a point source (its
Maj less than 2 arc seconds), and 0 otherwise
(9) ComDist: distance between the two centers
(10) RelDist = gy jlvﬁgfggj';j —Bvin: @ measure of the relative distance
between the two entries, values close to one indicating nearly intersecting
entries
(11) RelPFlux: ratio of the two peak fluxes
(12) RelFlux: ratio of the two fluxes
(13) RelMayj: ratio of the two majors
(14) RelIFlux: ratio of the two integrated fluxes
(15)
(16)

RelEllip: ratio of the two ellipticities
AnglGeom: angle formed by the position angles of the two major axes,
as calculated geometrically - angle AMB in both panels of Figure 9(a).
For two point sources, we define this angle to be 180°, and for a point
source and a regular source to be 90°.

(17) AnglDiff: angle formed by the position angles of the two major axes, as
calculated by the absolute difference in the two position angles — about
|0 — 45|° = 45° in the left, and about |0 — 135|° = 135° in the right panel
of Figure 9(a)

(18) AvgSNR: the mean of the two signal to noise ratios

(19) MaxSNR: the largest of the two signal to noise ratios

(20) RelSNR: the ratio of the two signal to noise ratios

31



The features for 2-entry radio sources include the 20 pairwise features above
and the 15 single entry features for each of the two components listed in
Section B.1.

B.3 Features for Three Catalog Entries

There are different ways of ordering the entries in a 3-entry source. First, we
need to identify the “core” of the galaxy. If we consider the triangle formed
by the centers of the three Gaussians, the core is the entry opposite to the side
that is the most unlike the other two sides in length. In the following, assume
that A is the core. Figure 9(b), depicts a possible arrangement of the three
catalog entries which is used to characterize the features reported below.

1
2

) totArea: the sum of the three total areas
) peakFlux: the max of the three peak fluxes
) sumIntFlux: the sum of the three integrated fluxes
) avgDiffusion: the mean of the three diffusions
) totEllipt: the sum of the three ellipticities
) maxFlux: the max of the three fluxes
) sidelobe: {0/1} flag, 1 if at least one of the entries might be a sidelobe
of a nearby bright source, 0 otherwise
(8) pointSrc: {0/1} flag, 1 if at least one of the entries is a point source (its
Maj less than 2 arc seconds), and 0 otherwise
(9) coreAngl: the core angle, defined as the angle BAC in the triangle above
(10) angleAB: angle ACB in the triangle above (between sides a and b)
11)
12)

(
(
(
(
(
(
(

(11) angleAC: angle ABC in the triangle above (between sides a and c)

( totalBendGeom: the total bentness of the source, equal to the sum of
ABAnglGeom = AMB and ACAnglGeom = ANC

(13) totalBendDiff: the total bentness of the source, equal to the sum of
the pairwise angles ABAnglDiff = |[APosAngle — BPosAngle| and
ACAnglDiff = |APosAngle — CPosAngle|

(14) ariAngl = acosgp5g: @ measure of bentness suggested in [18]

(15) ABAnglSide: the angle formed by the major axis of B with the AB
segment, angle ABM

(16) ACAnglSide: the angle formed by the major axis of C with the AC
segment, angle ACN

(17) sumComDist: the sum of the three pairwise ComDist

(18) sumRelDist: the sum of the three pairwise RelDist

(19) axialSym: a symmetry measure given by the ratio of the ellipticities of
entries B and C

(20) ariSym = ﬁ—g: a symmetry measure suggested in [18]
(21) anotherSym = ;7380 another symmetry measure
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(22) consDemote: {0/1} flag, 1 if one of the non-core entries is far from the
core, and 0 otherwise [B is considered far if AB > 2 x const x (AMaj +
BMaj), where const is currently set to 3 arc seconds; similarly for C]

The features for 3-entry radio sources include the 22 triple feature above, the
3 x [last 12, i.e. (9) — (20)] pairwise features listed in Section B.2, and the
3 x 15 single ones in Section B.1. We therefore have a total of 103 features for
each galaxy composed of three entries. Associated with each of those galaxies
is a class label taking values in the set {5, 1,7}, indicating whether the galaxy
is a bent double {5}, a non-bent double {1}, or its status is unknown {?}.

Appendix C: GLM Fits Using the FIRST Features

The GLM model M1 obtained by fitting all the features obtained through
EDA and PCA is given below. The rows indicate the p = 28 explanatory vari-
ables (including the intercept) of the model, the “Value” column reports the
corresponding coefficient estimate B, the “Std. Error” its associated standard
error estimate, and the “t value” column the ratio of the first two columns.
Under certain assumptions, those ratios follow a 7 distribution with n — p
degrees of freedom. The deviance is a measure of the goodness of fit based
on the likelihood of the data. The null deviance is the largest deviance, corre-
sponding to the intercept-only model. It is a reference measure, used to gauge
the reduction in deviance achieved by the model with p parameters.

Coefficients for Model M1:
Value Std. Error t value
(Intercept) -57.093412 37.928156 -1.5053042
totEllipt 50.033907 14.847688 3.3698113
totalBendGeom -7.150701 2.642374 -2.7061652
ariAngl -317.925771 97.404147 -3.2639860
angleAB 107.898636 34.284436 3.1471609
angleAC 165.799156 52.442448 3.1615450
ABAnglSide 9.500516 .013814 3.1523233
ACAnglSide -7.664272 .518944 -3.0426525
ACRelDist 26.369560 .426587 3.5506967
axialSym -8.451852 .863872 -2.9511971
ariSym 10.480015 .133147 3.3448839
anotherSym  83.863853 24.472044 3.4269248
pointSrc 9.098698 .348426 2.7173059
ADiffusion 6.751144 5.195230 1.2994891
BEllipt -53.679285 14.998247 -3.5790372
CRMS 20.544570 6.662908 3.0834238
ABComDist -4.508462 1.891256 -2.3838455

W N NN W

w
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ABRelPFlux -6.777815 6.434170 -1.0534094
ABAnglGeom -1.896162 1.603219 -1.1827222
ACRelPFlux -65.771404 23.279409 -2.8253039
BCRelEllipt 15.015719  4.328118 3.4693412
BCRelSNR  93.244738 28.998183 3.2155372
AE1lipt -23.523837 7.447329 -3.1586944
ASidelobe -17.340847 34.304004 -0.5055051
BTotArea  11.656726  5.212098 2.2364747
BIntFlux 5.795060 2.973766 1.9487277
CIntFlux  31.930109 14.578911 2.1901573
CMaj -9.215941  4.914342 -1.8753152

Null Deviance: 160.4564 on 194 degrees of freedom
Residual Deviance: 20.81799 on 167 degrees of freedom
AIC: 76.82

Stepwise model selection starting from M1 discards the ADiffusion and the
ASidelobe variables, and results in the model M2.

Coefficients for Model M2:
Value Std. Error t value
(Intercept) -54.315607 14.514604 -3.742135
totEllipt 57.380683 15.395853 3.727022
totalBendGeom -10.038605 3.015320 -3.329201
ariAngl -449.883492 121.416119 -3.705303
angleAB 154.036632 41.838396 3.681705
angleAC 232.857736 63.221864 3.683184
ABAnglSide 10.133813 .859259 3.544210
ACAnglSide -11.172152 .317167 -3.367980
ACRelDist 38.306010 10.217002 3.749242
axialSym -12.921232 3.588907 -3.600325
ariSym 14.167198 3.904558 3.628374
anotherSym 119.691329 32.132912 3.724883
pointSrc  13.442112  3.457794 3.887481
BEllipt -66.849313 17.627782 -3.792270
CRMS 17.078123 4.829860 3.535946
ABComDist -8.715963 2.577743 -3.381238
ABRelPFlux -10.989428 4.179021 -2.629666
ABAnglGeom  -3.362615 1.579319 -2.129155
ACRelPFlux -79.717591 22.530221 -3.538252
BCRelEllipt 20.536618 5.504795 3.730678
BCRelSNR 119.950339 33.619660 3.567863
AE1lipt -28.066927 7.742900 -3.624860
BTotArea 9.159150 2.794514 3.277546

w N
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BIntFlux 6.456872 2.661301 2.426209
CIntFlux 44.317889 13.901259 3.188049
CMaj -4.340964 2.868163 -1.513500

Null Deviance: 160.4564 on 194 degrees of freedom
Residual Deviance: 16.14147 on 169 degrees of freedom
AIC: 68.14

The model M3 is created by first starting with the common variables identi-
fied by both the EDA and the PCA methods, then applying stepwise model
selection.

Coefficients for Model M3:
Value Std. Error t value
(Intercept) -4.7669653 1.0224322 -4.66237
ariAngl -36.2784958 11.7473094 -3.08823

angleAB 12.8672428 4.7648430 2.70045
angleAC 17.1145607 6.9184605 2.47375
ABAnglSide 0.6282016 0.3846913 1.63300
ACRelDist 1.7231843 0.4754129 3.62460
anotherSym 11.5488358 3.0428690 3.79537
pointSrc 1.0692337 0.5178718 2.06466
ADiffusion  1.2334447 0.9166225 1.34564
BEllipt -2.0299085 0.7699809 -2.63631
CRMS  0.8742627 0.5626143 1.55392

Null Deviance: 160.4564 on 194 degrees of freedom
Residual Deviance: 57.64784 on 184 degrees of freedom
AIC: 79.65

The model M4 is created from M3 by stepwise model selection, including
second-order interaction terms (indicated by colons).

Coefficients for model M4:
Value Std. Error t value
(Intercept) -39.985636 17.440329 -2.292711
ariAngl -436.293828 176.649213 -2.469831
angleAB 136.892303 62.219834 2.200139
angleAC 240.866311 101.408343 2.375212
ABAnglSide -11.352798 20.399232 -0.556530
ACRelDist 11.685406 5.499055 2.124984
anotherSym 148.458562 58.490923 2.538147
pointSrc -1.230441 .236727 -0.234963
ADiffusion 8.685167 .683723 1.130333
BEllipt -20.203233 .728673 -2.314582

0 N O
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angleAC:anotherSym -18.090278 10.260183 -1.763153
angleAB:BEllipt 14.335118  8.727912 1.642445
angleAB:ABAnglSide -14.997816 17.734393 -0.845691
ACRelDist:pointSrc  21.325322 9.032502 2.360954
ABAnglSide:ACRelDist 10.697313  5.250487 2.037394

Null Deviance: 160.4564 on 194 degrees of freedom

Residual Deviance: 5.189981 on 180 degrees of freedom
AIC: 35.19
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